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Abstract
The physical features of a sandy beach and their variation throughout the year
is described. The variation in population structure of Callianassa filholi and its
distribution depends on the physical factors, the most important single factor being
sand movement. Burrowing behaviour is intimately connected with feeding and
respiration, the main food material being a diatom Chaetocerus armatus.

Introduction
Callianassa filholi Milne-Edwards 1878 is a burrowing decapod crustacean inhabit-
ing sandy beaches and also some areas of sandy mud throughout New Zealand
(Fig. 1). In this work an outline is given of the physical environment, burrowing,
behaviour, population structure, breeding and distribution.

Much of the study was carried out in New Brighton Beach (part of Pegasus
Bay, Canterbury) from December, 1961, to January, 1963, and some additional
work was done at Otakou in Otago Harbour, Otago, during 1963.

Physical Environment
1. Description of Pegasus Bay

Pegasus Bay has been built up from overlapping sand and shingle fans formed
by two large rivers (Fig. 2), the Waimakariri and the Ashley Rivers, and spread
by littoral currents.

Scott (1955) has gathered data from offshore surveys and has sampled the
sand from various places along the coast, Reed (1951) has analysed offshore
sediments, and Garner (1953) has published data on surface salinities and tem-
peratures.
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Dawson (1954) found that the currents in Pegasus Bay are dependent on the
local weather conditions. The current off Banks Peninsula is a northwards-moving
coastal current. A transient wind-driven surface current moves across Pegasus
Bay from the north-east and where it meets the northwards-moving coastal current
an eddy is formed.

During northerly and easterly wind conditions, longshore currents move the
sedimentary material southwards and build up the beach. With southerly winds,
and northwards-moving longshore currents, heavy seas move much material from
the beach to beyond the surf zone out of the reach of normal wave action.

2. Sand Analysis and Sand Movements
(a) Sieve analysis

Samples of sand were taken at one mile intervals between the New Brighton
sandspit and the Waimakariri River, and also at Teviotdale. At low tide level
the sand was collected by pushing a scm diameter tube into the sand and collecting
the top 150cm. The sand samples were analysed using Wentworth grade sieves
and the results treated statistically using the Phi notation. When presented
graphically (Fig. 3), the various parameters, such as mean grade of sand (Md<£),
sorting efficiency (slope of curve) and skewness (whether curve is straight or
curved between Qs<£ and Qi<£) can be found (Inman, 1952; Morgans, 1956).
The sand grains were found to be well sorted (Goeff = 0.26); the mean grade of
sand varied from 0.13mm at the South Brighton sandspit to 0.25mm both at the
Waimakariri River and just north of the Ashley River where the sand suddenly

Fig. I.—Mature male and female Callianassa filholi about natural size. Note the large
cheliped of the male which is present on one side only.



No. 8 Devine—Ecology of Callianassa filholi Milne-Edwards 1878 95

graded into shingle (see Fig. 2). The skewness was zero, indicating that all grades
of sand were well sorted. Superimposed on this were variations due to cusp
formation and the slope of the beach (Bascom, 1951).

(b) Film of water retained
Sand bars and pools of water were often seen on the beach at low tide. During

the period the tide was out, the beach became firmer as the water table dropped.
Samples of sand about 15cm below the sand surface at low tide level were dried
to constant weight. The percentage of water was 22.08%, a figure corresponding
to that for many other sand beaches (Reid, 1934).

(c) Shape and structure of the grains
The sand grains were described by Reed (1951) as “sub angular, quartz,

feldspars and composite rock grains or fragments ”. The assemblage of minerals
showed that the sediments were derived from greywackes from the Waimakariri
and Ashley Rivers. Negligible amounts were derived from the volcanic rocks
of the Port Hills.

(d) Instability of the beach
It is well known that beaches are notoriously unstable but it was not known

exactly how variable the beach profiles of Pegasus Bay beaches were and how
much they change throughout the year.

Fig. 2.—Map of Pegasus Bay showing the position of sand profiles and areas where samples
of sand were taken.
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Profiles were determined by stakes set up at various regions in Pegasus Bay (Fig.
2). Each profile was derived from six stakes each 2.12 m long placed down the
beach in a straight line with 0.90 m projecting above the surface. They were
painted and washers welded at regular intervals for more permanent marks and
the stakes related to each other by means of a Quickset level. Records of sand
movement relative to the first reading of the stakes were taken weekly from May
(26.5.62) to January (13.1.63). The slope of the beach was 0° 36' at low tide
level and 2° 18' at high tide level for the South Brighton profile.

At all regions the profiles showed that the beaches had a yearly cycle of
build up and removal of sand. The amount of sand removed or added at each
stake for the South Brighton profile was averaged, and the results in Fig. 4 show
how the sand moved throughout the year. During May most of the sand was
removed in a single storm, but at Kairaki during the same storm there was no
sand removed at all. The overall effect in Pegasus Bay for the whole year has
been a build up of sand.

(e) Organic content

The organic content of six samples of surface sand and six samples of sand
at 60cm depth were determined by a method described by Morgans (1956).
Instead of Igm samples however, 500gm samples were shaken with water and the
fine material in suspension was poured off and allowed to settle out, and the
water decanted. The sediment which had settled was oven dried at 120°C. The
organic content of the surface sand was higher (0.94%) than the sand at 60cm
(0.58%). In the sands where the organic content was determined, there was no
black sulphide layer and care was taken to ensure that there were no large particles
of organic matter or animals which would have affected the results considerably.

Fig. 3.—Cumulative curves of some Pegasus Bay sediments (1, 4,6, 8, 11, 32) plotted against
a Phi scale to show the mean grade of sand at these places.
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3. Temperature

Every two weeks readings of sea temperatures with a mercury thermometer
to the nearest half degree G. were taken throughout the year at South Brighton
beach, and they showed that the maximum and minimum on the sandy beach
were more extreme than the open seas off Taylors Mistake (Knox, 1953) (Fig, 5).
The maximum temperature measured in the surf zone was about 22.50°G., and
the minimum was 8.50°C., giving a yearly range of 14.00°C. The temperature
of sand at about 60cm depth would follow that of the open sea (Bruce, 1928),
although surface sand temperatures would be influenced by the surrounding air.

4. Salinity

Garner (1953) has shown that the southern parts of the bay were less saline
than the northern parts varying about 32.30°/00-33.00°/00. At the mouth of the
Waimakariri River during the present study there was a lowering of salinity to
18.55p /00. This would be reduced further by river floods.

Burrowing, Respiration and Feeding

1. Structure and Formation of the Burrows
On the beach, the openings to Callianassa burrows are not always clearly

visible. Some groups of animals congregated together in a shared burrow system,
so each opening seen did not necessarily correspond to an animal. The subsurface
layout of the burrows was difficult to determine as any material forced down the

Fig. 4.—The average relative rise and fall of sand from all stakes at the South Brighton
profile from March 1962-January 1963.
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burrow destroyed the burrow wall causing it to collapse. However, by digging
and following the tunnels, and observing the animals burrowing between glass
plates in an aquarium, it appeared that the burrows had several vertical openings,
each which served as a combination “ exit ” or “ entrance When water currents
produced by Callianassa were forced out of the burrow as the tide was receding
“ cones ” of sand and debris were formed; when water was taken into the burrows
bringing sand with it, “ erosion craters ” were formed. The vertical shaft about 45cm
deep leads down to a series of tunnels much wider than the animal’s width,
which were interconnected at varying depths. At the bottom of the vertical shaft
and also at branches in the burrow, turning places were formed. When placed
on the sand, Callianassa quickly digs itself below the surface as protection against
predators. However, on the beach, it is difficult to observe the animals, so more
accurate observations were made in the laboratory.

Firstly, using both its chelipeds as a shield to stabilise the sand, Callianassa
digs into the sand with its second pair of legs. Pushing the sand to one side with
its third and fourth legs, it eventually pulls itself below the surface of the sand.
Now it proceeds to build a burrow. Digging vertically, using its second legs as
a shovel, and its chelipeds to stop sand falling, it transfers the dug sand to the
third raaxillipeds where a mucous secretion is poured upon it to enable the sand
to be used to support the wall of the burrow. It carries sand to the surface in a

Fig. s.—Temperature readings taken in the surf zone at South Brighton during 1962-63
compared with the open sea temperatures of Knox (1953).
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basket formed by the third maxillipeds, the second and third legs, with the
antennules on the top to act as a lid. Callianassa slowly burrows down more or
less vertically, gathers sand: at the bottom, turns around, climbs to the surface
and deposits the sand outside the burrow. From , this stage; it rarely leaves the
burrow.

2. Respiration

In the fairly open branchial chamber, water enters posteriorly and leaves near
the antennal peduncle. The linea thalassinica on the carapace is a hinge for rapid
movements to force water outwards quickly for clearing the gills of debris (Pearse,
1911).

To study the respiratory cycle, apparatus similar to that designed by G. P.
Wells (1949) was set up. Basically* it consisted of a glass U tube in a glass
container. A division was made in the container making two separate compart-
ments in which the only passage of water between them was through the U tube.
An animal placed in the U tube selected one opening as an entrance. It faced
the entrance, steadied itself with its legs, and pumped water with its pleopods
from one compartment to the other. The water level was raised in one compart-
ment which was recorded by a float attached to a straw beam which traced a
line on a smoked drum. The resulting trace gave an indication of how the
animal has behaved and consisted of a series of peaks about five minutes apart
showing cycles of activity (Fig. 6).

Fig. 6. -Traces on a smoked drum showing behaviour patterns of Callianassa filholi.
(a) Movements of the pen corresponding to movements of water through the tube (respira-
tory peak). (b) Backwards movements through the burrow. (c) Spurious movements for

cleaning and feeding.
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The large downwards movement of the pen corresponded to movements of the
pleopods circulating water through the burrow, whilst the animal was holding
itself steady in one place (a). After pushing water through the burrow it paused
and then moved rapidly backwards through the burrow and gave a peak in
opposite direction to the respiratory peak (b). For a while Callianassa foraged
on the bottom of the tube, (c) gathered detritus and cleaned itself when neces-
sary, and made small peaks on the trace.

At the beach when the tide was coming in and waves trickled over the burrow,
water was sucked down the burrow, then after a pause of thirty seconds, water
was blown out of the burrow for five to ten seconds after which water was again
sucked in for fifteen seconds. The cycle was not regular and was quicker than
in the laboratory, where the glass tube was completely covered with water so
that the laboratory observations may, in fact, be more indicative of conditions
that existed at high tide when the burrows were completely covered.

3. Feeding

Available food and gut contents
Gut contents were examined from six animals every month. In . all cases

except the September collection at South Brighton (8.9.62) the diatom Chaetocerus
armatus, was found in the gut. In the September sample, pinus pollen grains were
found. Occasionally another diatom Nitzschia seriata, some dinoflagellates,
Ceratium sp., Dinophysis sp., and an unnamed silicoflagellate were found.

Analysis of sand grain size of the gut contents was made using a micrometer
eyepiece and the range was from 0-0.03mm with occasional sand grains of o.lomm.
In the substratum, the amount of sand of this size range was so insignificant as
to be unmeasurable.

The surface sand from the intertidal zone had the richest fauna and flora
which consisted of ciliates, platyhelminthes and nematodes and also the diatom

Chaetocerus armatus.

The subsurface sand at a depth of 60cm and the surface sand below low tide
level had only ciliates and nematodes.

A mixture of carborundum powder 0.275mm, 0.132mm, and 0.0385mm in
diameter was made. Callianassa when placed on this mixture did not burrow
normally, but when the gut contents were examined after two hours a small amount
of the 0.0385mm carborundum powder was present.

With all monthly collections of animals, sand from the top 2cm of the beach
was taken. In all cases the diatom Chaetocerus armatus was present in the sand
along with organic detritus and the September sample also contained pinus pollen
spores. Callianassa must therefore have fed on the surface layer of the sand.
The size of the sand grains in the gut indicated that perhaps sorting of food
material occurred before it reached the gut of the animal, and the fine grade of
carborundum powder ingested confirmed this. Chaetocerus was present in large
amounts only in the inter-tidal zone and this may have accounted for the absence
of C. filholi sub-littorally.

Rapsom (1954) found dense quantities of Chaetocerus armatus on many
North Island beaches. The extremely dense proliferation of diatoms in the open
sea during the. winter months blew inshore leaving up to 2.5cm on the sand
surface as the tide receded. At South Brighton this concentration was never seen
but occasionally at Kairaki a o.scm layer was seen in a narrow band.
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Mechanism of feeding
The sagittal section of C. filholi (Fig. 7) shows the medial face of the left

appendages. The description of feeding is based on the appendages illustrated
together with observations of the animal in a glass U tube into which sand and
detritus had been placed.

Callianassa scoops sand from the bottom of the U tube with its second leg
and flicks it upwards; the shower of falling fine material is sorted by the third
maxilliped. The first and second maxillipeds transfer the material to the remaining
mouthparts, guided by the end three segments of the modified third maxilliped.
This can only happen in relatively still conditions, as water disturbance would
disperse the food when it is flicked upwards. The precise functions of the other
appendages are not so obvious but the second maxilliped probably traps the food
material which is flicked upwards, where it is then combed off by the first maxilliped.
A combing action by the second maxilla and first maxilla then takes place, and
material is passed on to the fine setae on the mandibles. Food is removed into
the mouth by the mandibles and first maxilla.

In a burrow, Callianassa collects sand from the face of the tunnel and this
sand is worked by the mouth-parts in a similar manner to that just described.
It has not been determined whether Callianassa feeds on this sand while digging.

Feeding in C. californiensis (MacGinitie, 1934) is similar to that of C. filholi
except that MacGinitie makes no mention of flicking movements.

Fig. 7.—Diagram of a medial section through the mouthparts of Callianassa filholi.
oes, oesophagus; ant. 1, first antenna; ant. 2, second antenna; max. 1, first maxilla;
max. 2, second maxilla; mxpd 1, first maxilliped; mxpd 2, second maxilliped; mxpd 3, third

maxilliped.
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Such a feeding method allows the use of fine suspended organic matter in
the turbid surf zone. The organic matter carried into the burrow by respiratory
currents slowly settles on the floor of the burrow.

Breeding Activity,, Age, Settlement and Growth
To study the population structure of Callianassa filholi it was necessary to

have a reasonably non-biased sample of the population. The best method for
collecting the animals was by using a suction pump described by Hailstone and
Stephenson (1961) which they used for collecting Callianassa australiensis. It
worked very well in a sandy environment, withdrawing the animals completely
from their burrows and in most cases more than one animal was obtained. Under
good conditions it was about 70-80% effective.
1. Sex Ratio

Throughout the year, the percentage of females in a population averaged 61.3%
giving a male to female ratio of 1:2. When only the smallest animals of a
population were considered the ratio of male to female was nearer unity. A
greater number of females in a population has also been observed for Metapenaeus
marstersi by Dali (1958) and Callianassa australiensis by Hailstone and Stephenson
(1961).

2. Measurements Related to Growth
Animals were collected at low tide, anaesthetised with chlorobutol and fixed

in neutral formalin during which contraction occurred. The animals were
measured with calipers to the nearest mm. There was little if any difference found
in the proportion of the carapace length to the total body length. Only body
lengths were therefore considered in later measurements.

Fig. 8.—Graph of the widths of chelipeds plotted against body length of Callianassa filholi
to show increase of size of the cheliped in the males during growth.
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The curves (Fig. 8) show a differentiation between males and females due to
the difference in widths of the propodus of the chelipeds, a secondary sexual
characteristic which is shown by males when reaching about 22mm in length.
The function of the large cheliped is unknown, but it may be used in fighting.
Sexual maturity appears some time after the animals have reached this length and
the first egg laying is accomplished at 33mm. Callianassa australiensis shows similar
sexual dimorphism (Hailstone and Stephenson, 1961),

3. Breeding

The bright orange coloured ovary was visible through the integument in
mature females. Copulation was not observed, but the structure of the first
abdominal appendages of the male would facilitate the guiding of a sperm rope
from the male to the female for internal fertilisation. Immature eggs are a deep
orange, and mature embryos are almost colourless, except for eye spots, just before
hatching. Early in the breeding season, most of the larger females in berry still
retained some late stage eggs in the ovary which suggests that the larger females
breed twice a season and the two peaks in Fig. 9 confirm this. Smaller females
did not breed twice a year nor did they contribute greatly to the total larval
output. The eggs are attached to the first two pleopods in the female, which are

Fig. 9.—Graph of the percentage of ovigerous female Callianassa filholi in each month
throughout the year.
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modified for this purpose, but often the remaining pleopods carry some eggs
in the larger females. Egg numbers ranged from 660 for a 37mm female to about
1,500 for a 54mm female.

Egg laying began in early July at New Brighton Beach and continued to the
end of February. In Wellington Harbour, first stage larvae were found in the
plankton in July (R. Wear, pers. com.) whereas at New Brighton Beach the females
were first found to be in early berry in July. Aquarium observations showed that
eggs were carried for a period of five and a-half weeks. Hailstone and Stephenson
(1961) recorded an incubation period of six weeks for C. australiensis which
corresponds closely to that for C. filholi.

Fig. 10.—Length frequencies of South Brighton populations of Callianassa filholi from
January-December, 1962. The black bars represent males and the clear bars females.
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Age, Settlement and Growth
About one hundred animals were collected every month from South Brighton

and two samples were compared with two population samples from Kairaki, 11
miles north (Fig. 12). The lengths of Callianassa were measured after fixation
with calipers to the nearest mm and frequency histograms were plotted using 2mm
class intervals (Fig. 10). The curves were also plotted on probability paper using
cumulative probabilities (Gassie, 1954) and the means obtained were graphed
to show the pattern of growth throughout the year (Fig. 13).

1. Age determination
The length frequency histograms for collections made at South Brighton show

two distinct year classes for each monthly record. The older peak is larger than
the younger one. While sampling bias is present and cannot be avoided it would
be unlikely to produce the trend shown. When the July results are expressed as
histograms (see Fig. 10) two age groupings are present, but when plotted on
probability paper (Gassie, 1954) (Fig. 11) evidence is shown of a third year class
which is otherwise obscured. The July population thus has three apparent age
classes, a result which can also be shown for all other monthly samples. The first
year class ranged from 14mm to 29mm, the second year class from 29mm to
45mm, and the third year class from 45mm to 50mm. Larger animals may belong
to a fourth year class, the largest recorded being 65mm.

When a length frequency histogram of Kairaki population (18.9.62) is com-
pared with that of a South Brighton population (10,9.62) there is a marked
difference. In the Kairaki population, there is a peak where a possible year class
is missing in the South Brighton population (Fig. 12). Also the Kairaki population
has a poor representation of the first and last year classes. It is unlikely that a
population of Callianassa would have a mean growth rate of 24mm in one year
so it is possible that some variable factors present during different years could

Fig. 11.—Cumulative frequencies per cent versus length of animals for the July collection
of Callianassa filholi, showing three age classes. An inflexion indicates a separation of one
year class from the next. The mean length of the first year class is shown as 23.5mm.
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affect the successful settlement of post larvae. The review of the physical condi-
tions in Pegasus Bay showed that the movements of the sand at the South Brighton
profile were greatest just prior to the winter months during the time of the main
post-larval settlement, which occurred about April and May. An explanation put
forward is that the settling post-larvae were profoundly influenced by sand move-
ments and unfavourable currents during this period. Because conditions were
not identical at Kairaki and South Brighton, it is postulated that when sand was
removed at South Brighton but not at Kairaki there would only be successful
settling at Kairaki. This pattern is not identical every year and this would account
for the variation in year classes.

2. Growth and settlement
Some twelve hours after hatching the prezoea moults to the first larval stage,

3mm long described by Lebour (1955). The second, third, fourth and fifth larval
stages are 4mm, smm, 6mm, and 7mm long respectively, but the lengths of the

Fig. 12.—Length frequency histograms of the South Brighton and Kairaki samples showing
different population structures of Callianassa filholi in each area. In the South Brighton
sample there is a marked reduction of the second year class which is present in the Kairaki

sample.
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various post-larval stages are not known completely. The length of the post-larva
when it first settles is about 12-14mm. The telson formula is 7.1.7. for stages 1 and
2 and 8.1.8. for stages 3 and 4. First stage larvae occur in the plankton in July
and the first settlement was recorded in December, giving a larval life of just over
five months.

Fig. 13 shows the range, standard deviation and means of the youngest year
class of C. filholi. The general trend indicated is for a very slow increase in the
mean over the period January to July, and then a more rapid increase in later
months. The slow progression of the mean was probably due to continued recruit-
ment to the first year class, the more rapid shift of the mean after June occurred
when most of the settling had been accomplished. The sharp drop in December
was probably due to the influence of the next first year class. In January following,
there was an indication of a new year class appearing, and the mean of the now
second year class is joined by the dotted line.

Fig. 13.—A graph of the range, standard deviation and mean lengths of the first year class
of Callianassa filholi from January 1962-January 1963.
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The mean growth rate thus appears to be Bmm a year for the first year class
of Callianassa filholi. Hailstone and Stephenson (1961) give the rate for
C. australiensis as 9.5mm per year.

The growth curve shown seems unusual in that it would indicate little growth
for small animals and a rapid increase for older animals. Recruitment of the
population is probably the modifying and explanatory feature.

Distribution and Factors Limiting Distribution

Callianassa filholi is found throughout New Zealand wherever there are suitable
beaches.

C. filholi and C. cerarnica, an Australian species, are possibly very closely related
(Chilton, 1906) and C. filholi may have been derived from C. ceramica.

The profile of a sandy beach is continually changing due to sand movements,
thus the broad terms high, medium and low tide are all that are considered
necessary.

The presence of Callianassa filholi in any area was determined by recognising
the openings to the burrows which resembled either cones or craters. In Pegasus
Bay, the horizontal distribution was almost continuous except in sand areas adjacent
to river mouths and where sand graded into pebbles.

There appeared to be no correlation of numbers of animals with temperature,
salinity or grade of sand and Callianassa has been found in estuarine areas and

Fig. 14.—An observed Poisson distribution of burrows of Callianassa filholi compared with
an ideal Poisson distribution. The observed distribution indicates aggregation of burrows.
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extensive mud flats such as Marakopa Estuary (Wood, 1962) and Otago Harbour.
The most important limiting factor in the distribution was the instability of the
sand with respect to removal by wave action. In an area approximately 500 square
metres there were 47 holes at South Brighton and 117 holes at Kairaki.

Vertical Zonation on a Beach
When present in sufficient numbers to indicate distribution patterns, C. filholi

was present from 3 metres below low tide level to just above half tide level. On
South Brighton beach, this was a strip of beach about 90 metres wide.

The greatest concentration of animals was in the middle portion of the beach
(50-60 metres above MLWN) and this was probably due to a combination of
factors, the main one possibly being food. Dahl (1952) has noted that
Callianassa sp. in Chile were in a distinct band, and he says that on these beaches
the upper beach sloped steeply and the lower beach was flatter. The Callianassa
were just below the point of inflexion, an area likely to become very silty and
also collect a large amount of debris. A typical beach profile at South Brighton
showed some change in slope, but not a pronounced inflexion. It was at this
change of slope where the greatest amount of fine debris collected, especially the
diatom Chaetocerus armatus (which formed a sludge) and was thus an area with
plenty of food.

Congregation

The distribution of Callianassa on a beach may be dependant on random
settling, or the animals may congregate. When positions of the burrows were plotted
accurately there appeared to be some evidence of congregation. An area at South
Brighton, 64 metres across the beach and 14 metres along the beach, was divided
into quadrats and the number of quadrats with 0,1, 2,3, etc., burrows recorded.
By comparing the distribution of burrows in the quadrats with an ideal Poisson
distribution (which is a measure of randomness) (Andrewartha, 1961), it was
found that the distribution was more variable than the Poisson series, indicating
non-random distribution (Fig. 14).

Two peaks can be recognised, one approximately corresponding to that of
the expected Poisson and another at two holes per quadrat. The curve does not
tail off as in the expected Poisson, indicating some very large burrow systems.
The non-random distribution can be explained by observations in the field where
it was found that a single burrow was occupied by one male together with two
or more females. The number of burrow openings does not necessarily give the
number of individuals present, but a larger burrow system generally has more
animals. When collecting the animals with the suction pump, many more openings
became visible as sand was sucked down into the burrow from these other openings.
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