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Abstract
Chemical and mineralogical data are presented for samples from the Mt Falconer
quartz monzonite pluton, the wall rocks and the associated intrusions. A detailed
account of petrography and structure Was given in an earlier paper (Ghent and
Henderson, 1968).

Chemical analyses of total rocks indicate that the major element chemistry of the
Mt Falconer pluton is very similar to that of other granite bodies mapped as Irizar
Granite.

Potassium-rubidium ratios of total rocks fall on the “main” trend (150-300),
however, they do not indicate the complexity of the igneous events in the Mt Falconer
area.

Mafic dykes are considered to be genetically related to the emplacement of the
Mt Falconer pluton. Small amounts of mafic magma are inferred to have been
mobilised by hot, water-uhdersaturated quartz monzonite magma.

Strontium partition between alkali feldspar and plagioclase is not a reliable
geothermometer for thfe Mt Falconer pluton; this is likely to be due to subsolidus
redistribution of strontium.

Field and chemical evidence indicate that the Skelton Group amphibolites in
the Mt Falconer area are para-amphibolites.

Phase relations of alkali feldspar, plagioclase, and quartz in the Mt Falconer
pluton, when compared to the experimental data, are compatible with early magmatic
crystallisation 6f plagioclase followed by quartz and alkali feldspar.

Introduction
The Mt Falconer quartz monzonite pluton is located in the Lower Taylor
Valley, South Victoria Land, Antarctica (about 77°30'S, 163°08/E, see Ghent and
Henderson, 1968: 852, for a location map). This pluton was studied during the
summer of 1965-66 by Victoria University of Wellington Antarctic Expedition
No. 10, and a paper on the petrography and structure, including a geological map,
has been published elsewhere (Ghent and Henderson, 1968).

A brief summary of the geology will be given here: for details and for the loca-
tions of samples referred to in this paper see Ghent and Henderson (1968).
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The pre-Beacon Group rocks consist of, in order of decreasing age: (1) Skelton
Group metasedimentary rocks (amphibolite facies) ; (2) granodiorite gneiss; (3)
diorite “hybrid”, microdiorite to trachydiabase, and granophyre dykes; (4) the
discordant, epizonal Mt Falconer quartz monzonite pluton (about two square miles
in outcrop area); and (5) silicic and camptonite dykes. The pluton and the dykes
cut off the foliation and gneissosity of the Skelton Group rocks and the granodiorite
gneiss at high angles, but there is no apparent deflection of earlier structural trends.
Dykes of unit (3) are cut off at a low angle by the pluton, which is in turn cut by
leucocratic and camptonite dykes of unit (5) along the same structural trend as
the earlier dykes.

In this study total rock major and trace element data are reported for three
samples of quartz monzonite, three samples of mafic dyke rocks, and one sample
each of granophyre, diorite " hybrid ", and Skelton Group amphibolite. In addition,
major and trace element data on feldspars, biotites, and amphiboles from the
Mt Falconer pluton and associated rocks are reported. As an indication of the
accuracy of the analyses reported in this paper, U.S. Geological Survey silicate rock
standards have been analysed and these analyses are reported in the appendix. A
discussion of the accuracy of electron microprobe analyses is also contained in the
appendix.

The chemical data are discussed with reference to the following problems: (1)
crystallisation of the quartz monzonite in light of experimental data; (2) major-
element chemistry and structural state of feldspar; (3) origin of mafic dykes; (4)

Fig. I.—Quartz—saturated anorthite-albite-orthoclase systems at 1000 bars water vapour
pressure (data from James and Hamilton, 1969). Squares indicate feldspars, circles with
single numbers, e.g., 6, total rocks; and temperatures at 3 points on the cotectic line are also

indicated; sample numbers refer to analysis numbers in Table I.
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interpretation of K:Rb ratios in total rocks and minerals; (5) Sr partition between
alkali feldspar and plagioclase; (6) the origin of the Skelton Group amphibolites.

Major-element Chemistry of Total Rocks
Introduction

Partial chemical analyses of nine total rock samples from the Mt Falconer area
are presented in Table I. Analytical methods and estimates of reliability of analyses
are presented in the appendix.
Mt Falconer Pluton

Ghent and Henderson (1968: 867—8) presented modal analyses suggesting that
the Mt Falconer pluton was relatively homogeneous with respect to mineralogical
composition. A comparison of three total-rock analyses from the pluton with the
average of five analyses of Irizar Granite from elsewhere in Victoria Land indicate
that the plutonic rocks which have been mapped as Irizar Granite have a limited
spectrum of chemical variability.

Bottinga et al. (1966) have criticised the use of normative mineral compositions
in experimental systems. In the present study a more realistic “ norm ” was calcu-
lated from the chemical analyses by subtracting K 2O and Si02 for biotite 1 and

1. Analyses were corrected by subtracting 0.45 percent K2O and 1.9 percent SiOg for biotite
in the quartz monzonites and granophyres.

Fig. 2.—Quartz-albite-orthoclase system with a fixed (7.5 wt percent) anorthite content.
Circles with adjacent numbers indicate total rock analysis and refer to the same samples which

were plotted in Figure 1. (Experimental data from James and Hamilton, 1969.)



2.’
FDO
10

Early
mafic

dyk?
(hornblende
biotite
trachy-diabase
or

micro
diorite).
For
modal

analyses
see

Ghent
and

Henderson,
1968:

807.

3*

FB3-2
Late
mafic
dyke

(barkevikite
camptonite).

„

,

incQ
QCQ

4.
FP2-6

Quartz
monzonite.
For
modal

analyses
see

Ghent
and
Henderson,

1968:
868.

5.
FP2-7

Quartz
monzonite.
For
modal

analysis
see

Ghent
and
Henderson,

1968;
868.

6.
FP2-17

Quartz
monzonite.
For
modal

analyses
see

Ghent
and
Henderson

1968
:

868

7

Average
of
five

analyses
of
Irizar

Granite
(Harrington
et

al,
1967:

49;
Hamilton,

1965).

8.
FG3-1

Granophyre
(for

averagemodes
see

Ghent
and

Henderson,
1968:

880).

9.
FL-12
Diorite
“hybrid”.

10.
FG-4
Amphibolite
gneiss
averageof
two

analyses.

11.
Continental
crust

(Taylor
and
White,

1966,
table

VI).

12.
Basalt
(Taylor
and
White,

1966,
table
VI).

13.
Granodiorite

(Taylor
and
White,
1966,

table
VI).

14.
Granite

(Taylor
and
White,

1966,
table
VI).

15.

Trachydiabase
dyke,

Burke
area,

Vermont
(Woodland,

1962:
1098).

16.
Minette,
Shiprock,

Arizona
(Williams,

1936:
166).

—.

detected.
not

H

l.

Table
I.—Major
and

trace
element

analyses
of

igneous
and
metamorphic

rocks
from
the
Mt

Falconer
area.

120 Vol. 8Transactions—Earth Sciences

1 55.3 8.48

Os

0.14 5.43

MgO

6.56

Na
a

4.11

K

1

loss
ignition

55.3

Ti0
—
2

Sample
Number

2
'

3

4

52.0
48.6

71.5

9.09
9.30
2.26

0.17
0.19
0.04

7.53
6.18
0.46

7.57
8.19

1.53

3.12
2.70
4.0

3.59
3.82
5.94

1.70
—

0.46

0.90
—

0.32
5 70.0 2.86 0.05 0.46 1.644.27 6.0 0.48 0.38
6

7

8

9

10

11

72.3
71.58
70.1
59.5

-56.6
60.13

0.92
2.52
2.26
6.26

3.75
7.78

0.04
0.05
0.04

0.09

0.07
0.12

0.36
0.34
0.20
1.79
12.23

4.63

1.56
1.30

0.91
3.88

8.10
6.40

3
53

3.67
3.94
4.59

1.89
2.94
,

5.36
5.09
6.23
5.0

2.87
2.44

0.48

—0.44
1.03—— ___

0.58
2.5

12

13

14

15

16

18.79
66.98

71.26
47.93
51.5

11.94
4.20
3.60

10.85
7.61

0
19

0.07

0.05

0.15
0.10

8.72

1.58

0.55

4.0

7.90

10.81
3.56

2.0

8.15

9.10

2.32

3.85

3.55

3.02

2.55

0
71

3.06
4.16

4.12
5.65

__6.21®
1.55

4

1.84
"

0.57

0.40

2.03

1.85

8.48 39Li0.14 26Co5.43 19Cu6.56 652

Sr

3.59 152

Rb

4.11 112

Zn

Sample
Number

2

3

52.0
48.6

9.09
9.30

0.17
0.19

7.53
6.18

7.57
8.19

3.12
2.70

3.59
3.82

4 71.5 2.26 0.04 0.46 1.534.0 5.94
5 70.0 2.86 0.05 0.46 1.644.27 6.0

6 72.3 0.92 0.04 0.36 1.56 3.53 5.36

7 71.58 2.52 0.05 0.34 1.30 3.675.09

3 70.1 2.26 0.04 0.20 0.91 3.94 6.23

9 59.5 6.26 0.09 1.79 3.88 4.59 5.0

10 36.6 3.750.07 12.238.10 1.892.87
11 60.13 7.78 0.12 4.63 6.40 2.94 2.44
12 48.79 11.940.19 8.72 10.812.32 0.71

13 66.98 4.20 0.07 1.58 3.56 3.85 3.06
14 71.26 3.60 0.05 0.55 2.0 3.55 4.16
15 47.93 10.850.15 4.0 8.15 3.02 4.12 6.21

s

16 51.5 7.61 0.10 7.90 9.10 2.55 5.65 1.55*

lossignition 72Ca/SrTiOa 228K/Rb0.92 0.23Rb/Sr
1.70

million

Data
parts
per

0.90

38

59

35
—

nd

52

42

0.46 1

41

5

0.32 342

666

702

0.48 0.38
0.48

—

0.44
1.03

0.58
2.5

1.84

0.57

0.40

2.03

1.85

Data

284

172

140

million
in
parts

56

99

90

35 10 25 440 110

77

88

32

209

185

175

0.20
0.26

0.83

41 9 2 406 26456 29 1900.67
2 r ] 0

40
—

nd
—
.

nd
—

144
—

;

>76
—

:

67
—

32
—

162
—

:

.80
—

1

15

38

3

20

_34

64

25

13

5

61

55

230

794

286

375

240

212

130

85

43

110

88—
28

35

202

122

216

197

184

240

.04

0.27

0.46
0.23

10

35

30——
48-

10

2'
.——

100

25

10——
465

440

285——
26

110

145——
166

58

50——
270

230

240—
0.056
0.25

0.51——

Li Co Gu Sr Rb

39 26 19 652 152

35 42 5 702 140

59 52 41 666 172

38 nd 1 342 284

41 9 2 406 264

40 nd nd 344 276

—

15 13 230 240

38 34 5 794 212

3 64 61 286 130

20 25 55 375 85

10 48 100465 26

30 2' 10 285 145

—

—

Zn Ca/SrK/Rb Rb/Sr
11272 228 0.23

90 77 209 0.20

99 88 185 0.26

56 32 1750.83

56 29 1900.67

67 32 1620.80

—

43 28 216 1.04

110 35 1970.27

88 202 1840.46
122240 0.23

166 270 0.056
58 230 0.25

50 240 0.51

—

—



No. 9 Mt Falconer Pluton and Associated Rocks—Ghent 121

allocating the appropriate amounts of Na 2C), K 2O, CaO, and Si02 to albite, ortho-
clase, and anorthite respectively. The remaining Si02 is taken as quartz. The single
chemical analysis of a granophyre (No. 9) was treated in the same way. These
data have been plotted in the An-Ab-Or-Qz system in Figs. 1 and 2 and the inter-
pretation of these data is given below.

Mafic Dykes
Pre-Mt Falconer pluton dykes were termed biotite-hornblende (clinopyroxene)

microdiorites by Ghent and Henderson (1968), but many of the samples contain
abundant alkali feldspar and these rocks might be more appropriately termed
trachydiabase or trachymicrodiorite.

Mafic dyke rocks of the lamprophyre clan show a wide variation in mineralogy
and chemistry. For comparative purposes chemical analyses of a trachydiabase from
Vermont (Woodland, 1962: 1098), a minette from north-east Arizona (Williams,
1936: 166), and the average basalt (Taylor and White, 1966) are presented in
Table I. A discussion of the significance of these chemical data is given in the
section on the origin of the mafic dykes.
Potassium—rubidium Ratios

Potassium-rubidium ratios have long been a major topic of research in the
geochemistry of igneous rocks. Shaw (1968) has recently reviewed the subject,
using a statistical approach. The main issue in K/Rb studies is whether the ratio
remains constant or decreases steadily during igneous differentiation. According to
Shaw (1968) there are three principal trends, one of which, called the main trend,
closely fits a straight line with log ppm (Rb) = 1.115 log (%K) -f- 1.597, i.e., in
the K/Rb range of 150-300. The other trends are the oceanic tholeiite trend with
K/Rb about 3000 and the pegmatite-hydrothermal trend with K/Rb about 50 or
less. All of the K/Rb ratios from the Mt Falconer igneous rocks fall on the main
trend. The ratios vary from 162 in the quartz monzonite to 228 in the mafic dykes
and there appears to be a decrease in the K/Rb ratios with decreasing age of
emplacement, fitting an apparent “ fractionation trend”. An examination of the
field and petrographic evidence, however, indicates that there was a complex
sequence of events during the emplacement of the igneous rocks. Early-formed
mafic dykes are composed largely of biotite, amphibole, and feldspar. According
to Shaw (1968; 592) ratios on the main trend are controlled largely by modal
abundances of hornblende (high K/Rb) and biotite (low K/Rb). The mafic
dykes then have K/Rb ratios which are largely an average of the contributions of
hornblende and biotite (and feldspar). Diorite “hybrids” contain abundant late-
stage potassium feldspar, sodic plagioclase, biotite, and quartz, Ghent and Hender-
son (1968: 864—5) noted that there appeared to be no correlation between the
anorthite content of the plagioclase in these rocks and their modal abundance of
alkali feldspar and quartz. They concluded that a fluid phase rich in K, Na, and
Si had been introduced non-uniformly into the dioritic rocks. The K/Rb ratios of
the diorite “ hybrids ” are intermediate between those of the mafic dykes and those
of the quartz monzonite (FL-12 gives a ratio of 197). This value falls on the main
trend and indicates, by itself, nothing unusual about the crystallisation of the
rock. In addition, the volume relations of quartz monzonite, mafic dykes, and
diorite “ hybrid ” are incompatible with a “ normal ” sequence of igneous differ-
entiation. The conclusion to be drawn is that uncritical use of K/Rb ratios may
lead to an erroneously oversimplified view of igneous petrogenesis.
Origin of the Mafic Dykes

The origin of mafic dykes associated with granitic plutons has long been debated,
e.g., see Oftedahl (1957), Turner and Verhoogen (1960: 250-6) and Bateman
et al. (1963: 25-7), The writer feels that the following points are critical in the
interpretation of the origin of the mafic dykes in the Mt Falconer area: (1) the
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thin mafic dykes and the quartz monzonite pluton are closely associated in space
and time and they crystallised in a similar stress environment (Ghent and Hender-
son, 1968: 876); (2) the volume of mafic rocks, including the coarser diorite
“hybrids”, is far less than that of the quartz monzonite pluton; (3) chemically
and mineralogically there are some rock types intermediate in composition between
the mafic rocks and the quartz monzonites, but their volume is very small and they
can be more reasonably interpreted in terms of reaction between quartz monzonite
magma and partially crystallised mafic magma rather than by conventional
fractionation; (4) the mafic dykes contain abundant quartz xenocrysts; (5) the
early mafic dykes contain abundant inclusions of tremolite and actinolite amphi-
bolite.

The following modes of origin for the mafic dykes seem to be worthy of dis-
cussion: (1) the mafic dykes crystallised from a contaminated basaltic magma, and
the basaltic magma was derived from a deep source separate from that of the quartz
monzonite; and (2) the dyke magma was mobilised from masses of older diorite,
gabbro, mafic volcanic rock, or amphibolite.

The best argument against a deep independent source for the dyke magma is
that only small amounts are intruded and that these are emplaced both before and
after the emplacement of more silicic plutonic rocks. To regularly derive small
quantities of mafic magmafrom a deep-seated source independently of the associated
silicic magmas would seem to require an unnecessarily complex plumbing system.
A local source for the mafic magma seems more probable and the next question is
whether there is a genetic connection between the emplacement of the mafic dykes
and the emplacement of the quartz monzonite pluton. Field data are compatible
with a related genesis for the mafic and silicic rocks.

Experiments show that initial melting temperatures of mafic and silicic rocks
converge at high water pressures (on the order of 10 kilobars) (Fig. 1). “Dry”
and water-undersaturated rocks have beginning of melting curves with positive
slopes on a pressure-temperature diagram. It is possible then to conceive of a hot,
water-undersaturated silicic magma causing partial melting of water-rich mafic
rocks.

The initial melting behaviour of Mt Falconer mafic rocks will probably be
bracketed by the beginning of melting curces for water-saturated alkali basalt and
tonalite (Fig. 1). Beginning of melting curves for water-saturated and “water-
undersaturated ” Sierra Nevada granite are considered to approximate the initial
melting behaviour of Mt Falconer quartz monzonite.

What is the evidence for the water content of the Mt Falconer mafic and silicic
magmas? Combined water in hydrous minerals is higher in the mafic dykes than
in the quartz monzonite (Table I), but since the present water content may repre-
sent only a minimum value for each magma, this evidence can be considered only
permissive. The presence of patchy zoning (Vance, 1965) in plagioclase in the
quartz monzonite and the general lack of patchy zoning in the plagioclase of mafic
dykes (Ghent and Henderson, 1968: 858) is consistent with a higher water content
in the mafic magma. Patchy zoning is interpreted to have formed by resorption
and later precipitation of plagioclase in a water-undersaturated magma which
moved upward in the crust with a concomitant decrease in load pressure.

The mafic dykes locally contain abundant interstitial alkali feldspar and sodic
plagioclase. One possible source of the alkalis and silica is a metasomatic addition
from the quartz monzonite magma. In any case these components would also tend
to lower the melting temperature of the mafic rocks.

In summary, the field, petrographic, chemical, and experimental data allow
one to reasonably speculate that the quartz monzonite magma could have caused
mobilisation of small volumes of mafic rocks.



Mt Falconer Pluton and Associated Rocks—Ghent 123No. 9

The early mafic dykes are hybrid rocks in the sense that they are composed of
material from more than one source. The presence of partially digested xenoliths
of amphibolites and xenocrysts of quartz are the best evidence for a hybrid origin.

Several possible combinations of magma and xenoliths could give rise to the
above relationships: (1) a mafic (basaltic) magma contaminated with amphi-
bolite xenoliths and quartz xenocrysts; (2) a remobilised alkali and silica meta-
somatised amphibolite with quartz xenocrysts and undigested amphibolite remnants.
A unique solution to the problem cannot be given, since the unaltered condition
of each of the components, e.g., mafic magma, is not known. Amphibolite exposed
in the Mt Falconer area may not be representative of amphibolite at depth.
Examination of chemical analyses in Table I indicates that a simple combination
of amphibolite, such as represented by analysis 10, with quartz monzonite magma
or with “average” basaltic magma (Taylor and White, 1966) cannot produce the
present chemistry of either the early or the late mafic dykes. Simple mobilisation
of amphibolite, with additions of alkalis and silica, is also incompatible with the
chemical data. (Compare, for example, the silica, iron, and lithium contents of
the mafic dykes and the amphibolite.)

The hypothesis favoured by the writer is that mafic rocks (basaltic?) were
partially melted and metasomatised by hot, water-undersaturated quartz-monzonite
magma. This alkali-rich mafic magma later incorporated and reacted with amphi-
bolite xenoliths similar to those in the Skelton Group rocks. The late mafic dykes
could have had a similar origin, except that a source rock of slightly different
composition was melted and the magma was not strongly contaminated with
amphibolite. If the late mafic magma was mobilised by silicic magma the latter is
not exposed as a crystallised pluton in the Mt Falconer area.

Major Element Chemistry and Structural State of Feldspar
Plagioclase: Plagioclase from the Mt Falconer pluton shows strong microscopic

compositional zoning. Analyses of plagioclase-quartz mixtures are presented in
Table II and are recalculated to plagioclase, assuming no GaO and NaaO in quartz.
These analyses are considered to represent an approximation to the mean plagioclase
composition of the total rocks.

not det. = not determined.
Recalculated assuming all CaO and Na2© in plagioclase.
2D =wt in ppm Sr in alkali feldspar/wt in ppm Sr in plagioclase.
Composition estimated from X-ray diffraction; see Ghent and Henderson, 1968: 867-8.

Microprobe analyses of plagioclase in thin section indicate about 1.5—2.0 wt percent Or
(0.25—0.3 K2O) in solid solution. These results would change the An wt percent estimate by
no more than 1 wt percent An.

In a previous study Ghent and Henderson (1968; 867—8) reported estimates of
plagioclase composition based on X-ray diffraction, following procedures suggested
by Hall (1965). This method assumes (1) the plagioclase is in the low-temperature

Table ll.—Atomic absorption analyses of plagioclase quartz mixtures. Data in ppm except
where given as %.

Sample No. CaO% aO% An wt % (corr) 1 Sr D 2 X-ray*
FP-1 3.59 4.05 34 620 0.72 Amo
FP2-1 1.25 3.31 18 1150 0.36 Ansi
FP2-4 1.76 3.71 . 22 820 0.56 Ana
FP2-6 1.65 . 3.61 21 840 0.38 —

FP2-11 1.62 3.75 20 not det. not det. An
FP2-17 1.62 3.38 22 890 0.37 —

FL 9 3.41 4.49 31 1820 0.42 —

FS 10 5.0 3.92 43 1160 0.56 —
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structural state, and (2) the composition of the plagioclase is not severely skewed.
Data presented in Table II shows that the X-ray diffraction method overestimates
the anorthite content of the plagioclase in three samples and underestimates it in a
fourth. These data could be interpreted to mean that the composition of the
plagioclase in the mineral separates are compositionally skewed toward more
anorthite-rich compositions than the mean in three of the samples and toward less
anorthite-rich compositions than the mean in the fourth sample. If the disagree-
ment between the X-ray method and the chemical analysis were entirely due to
the occurrence of intermediate structural state rather than low-temperature struc-
tural state, the anorthite content of all of the samples would have been over-
estimated.

Alkali Feldspar
Alkali feldspars from the Mt Falconer pluton and associated rocks have been

studied by a combination of X-ray diffraction, atomic absorption spectroscopy, and
electron microprobe analyses.

In the earlier study the alkali feldspar was characterised as orthoclase micro-
perthite with low (0.0-0.18) A (obliquity) values. Three alkali feldspars have
been restudied in more detail, following the methods outlined by Wright (1968).
The results are presented in Table 111.

According to Wright (1968) the observed and predicted 2 9 for 201 should
agree to o.l° or else the feldspar is termed “ anomalous ”. Feldspars with anomalous
cell dimensions can be labelled according to structural state, but the cell dimensions
cannot be used to estimate composition. All of the Falconer samples fall near the
orthoclase structural series on a 204-060 plot (Wright, 1968: 91).

Compositions estimated from homogenised alkali feldspar by the 201 method,
however, agree to within 2-3 wt percent of the Or/Or -(- Ab + An values
obtained from atomic absorption. Agreement with the electron probe analyses,
however, is not as good. This can be attributed to the difference in sampling, since
in the homogenisation and atomic-absorption study of mineral separates calcic
plagioclase impurities were included in the analysis, whereas in the microprobe
analyses they were avoided.

Trace Elements from Alkali Feldspars
Trace-element ratios in alkali feldspars have been considered to be useful in

estimation of the degree of fractionation of magmas (e.g., Kolbe and Taylor, 1966).
Trace-element data on alkali feldspars from the Mt Falconer area are presented in
Table IV, and data from the feldspars of the Cape Granite are included for com-
parison. According to Kolbe and Taylor (1966) the differentiation sequence in the
high level Cape Granite is coarsely porphyritic granite, medium-grained granite,
fine-grained granite. The K/Rb and Rb/Sr ratios of the alkali feldspars from the
Mt Falconer pluton are comparable to those from the early coarsely porphyritic
granite of the Cape Granite. Ca/Sr ratios are difficult to compare, because Kolbe
and Taylor based their analyses entirely on mineral separates. Electron microprobe
study of the mineral separates from the Mt Falconer pluton indicates that they
contain antiperthite and other calcium plagioclase impurities.

* Reflection in °2# Gu K alpha.

Table III.—X-ray diffraction data on alkali feldspars.

Sample No. 204* 060 201 (observed) 201 (theoretical) A 201 (difference)
FP2-6 50.75 41.745 21.035 21.35 0.30
FP2-1 50.763 41.726 21.075 21.35 0.28
FS-10 50.745 41.71 21.04 21.30 0.26
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Sample

1

2

3

4

5

6

7

8

9

10

CaO%

0.23(0.12)
0.29(0.10)
0.38(0.14)
0.41(0.12)
0.35(0.12)
0.67(0.06)
0.96(0.10)
0.22
0.19
0.22

Na

2.43(2.75)
2.15(2.59)
2.56(2.36)
2.64(2.82)
2.54(2.51)
2.23(1.85)
1.59

2.38
1.89

2.21

o%
k

(12.97)

(12.9)

(13.4)

(12.9)

(13.3)

(14.0)

(14.1)

13.12
13.96

13.27

Li

3.4

3.1

2.5

4.8

2.9

4.2

5.2

4.7

4.8

6.4

Sr

444

412

456

315

329

767

647

166

94

44

Rb

439

479

415

490

458

372

480

410

540

640

Or
wt

76.9

76.6

79.4

76.4

78.6

82.8

83.6

77.79
82.77
78.71

Ab

23.2

21.9

19.9

23.8

21.2

15.6

16.0

20.06
15.96
18.70

An
wt

0.6

0.5

0.7

0.6

0.6

0.3

0,5

1.09
0.96

1.07

Total
wt

+

Ab

An

100.7

99.0

100.0

100.8

100.4

98.7

100.1

Ratios

100.7

99.0

100.0

100.8

100.4

98.7

100.1

'

K/Rb

246

224

269

219

241

312

244

267

215

173

Rb/Sr

0.99

1.16

0.91

1.55

1.39

0.48

0.74

2.5

5.7

14.5

Ca/Sr

1.93

1.73

2.19

2.74

2.6

0.6

1.1

9.5

14.8

3.5
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Strontium Partition Between Alkali Feldspar and Plagioglase

Introduction
Barth (1961) suggested the possibility of using the distribution of strontium

between alkali feldspar and plagioclase as a geothermometer. Virgo (1968) has
presented evidence that strontium partition between alkali feldspar and plagioclase
shows a regular behaviour with increase in metamorphic grade from the middle
amphibolite facies to the granulite facies. The distribution coefficient Kd (Kd =

Xk sr/Xp sr where X = mole fraction and K = alkali feldspar and p = plagioclase)
is usually near 1 for amphibolite facies rocks and greater than 1 for granulite
facies rocks. Virgo also quotes unpublished experimental data suggesting that Kd
increases with increasing temperature. liyama (1968) has recently presented
experimental data on partitioning of several trace elements between alkali feldspar
and plagioclase at 1000 bars water pressure and 600°G for feldspars of differing
composition. The fractionation coefficient D, where D = Sr ppm in alkali
feldspar/Sr ppm in plagioclase ranges from 0.80 to 0.85.
Application to Mt Falconer Plagioclase:

Data for co-existing feldspars from the Mt Falconer pluton and the associated
Skelton Group and diorite “ hybrid ” are presented in Table 111. The fractionation
co-efficient D for the feldspars of the pluton varies from 0.36 to 0,72, with the
highest value coming from a fine-grained sample (FP-1) near the contact with the
wall rocks. A schist from the Skelton Group has a D value of 0.56, which is lower
than any of the amphibolite facies fractionations quoted by Virgo (1968).

If the strontium feldspar “ geothermometer ” were taken literally, one would
infer temperatures of crystallisation of less than 600°G with little temperature
variation between pluton and wall rock. Can we account for this apparent
contradiction?

Berlin and Henderson (1969) have reported that analyses of Sr in co-existing
plagioclase and alkali feldspar phenocrysts, rock groundmasses, and total rocks of
porphyritic trachytes and phonolites indicate that plagioclase is a better solvent for
Sr than alkali feldspar at liquidus temperatures, i.e., D is less than 1. They point
out that data reported from coarse-grained plutonic rocks are often contradictory,
e.g., D greater than 1 for gneisses and granite in Northern Norway and D gener-
ally less than 1 for Donegal granites. They (p. 248) suggest that these contradictory
data may be due to “ subsolidus rearrangements ”. The discrepancy between the
experimental data on fractionation and the observed fractionation between feldspar
phenocrysts in trachytes and phonolites, however, remains unexplained. One possi-
bility is that the experimental data do not represent equilibrium fractionation and
a second possibility is that the observed fractionation in natural feldspars is not a
simple function of temperature. It is difficult to evaluate these two possibilities,
but some data are available to speculate on the subsolidus re-arrangement of Sr.

Arriens et al. (1966), report examples of discordant Rb-Sr mineral ages in
granitic rocks from Australia, from which they present strong evidence for expulsion
of radiogenic strontium from K-feldspar and its accumulation in plagioclase and
other calcium minerals. The extent of the expulsion and whether it includes much
common strontium as well as radiogenic strontium depends at least in part on the
intensity of the subsolidus event. Arriens et al. report (p. 4993) that the change of
state from a high temperature K-feldspar to a low temperature K-feldspar is
accompanied by the expulsion of Sr (K-feldspars with low obliquities gave younger
Rb-Sr ages). Presumably perthitic exsolution of albite from K-feldspar would also
result in expulsion of Sr. Strontium is unlikely to substitute readily into the
perthitic alibte and a likely accumulator is myrmekitic oligoclase and other grains
of groundmass plagioclase. Expulsion of Sr from K-feldspar at low temperatures
would result in lowering of D values, and because this is likely to be a non-
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equilibrium process the D values would show wide scatter. The Sr distribution
between feldspars in granitic rocks would thus seem to be an unreliable geothermo-
meter.

Crystallisation of Quartz Monzonite in Light of Experimental Data
Ghent and Henderson (1968) have presented field and petrographic evidence

that the emplacement of the Mt Falconer pluton could be reasonably interpreted
in terms of magmatic crystallisation. Chemical data on total rocks and feldspars
can be used to interpret the crystallisation history of the Mt Falconer pluton in light
of recent studies in the “ granite ” system.

The feldspar boundary curve in the quartz-saturated albite-anorthite-orthoclase
system at 1000 bars water pressure is plotted in Fig. 1 (James and Hamilton, 1969).
Compositions of co-existing feldspars for two samples and recalculated analyses of
three total rocks are plotted in the same figure.

Lines connecting feldspar compositions should pass through the points repre-
senting the recalculated total rocks analyses. Two possible reasons for this slight
inconsistency are: (1) the mineral analyses are not representative of the average
feldspar composition of the total rock; (2) recalculation of the rock analyses to the
albite-anorthite-orthoclase system is in error.

Ghent and Henderson (1968: 870) have concluded from petrographic evidence
that plagioclase began to crystallise before alkali feldspar. This conclusion is con-
sistent with the fact that the recalculated analyses plot in the plagioclase field.

Plagioclase from the Mt Falconer pluton is chemically zoned and consequently
the feldspar analyses represent the “ average ” composition of plagioclase that
crystallised and the line connecting the composition of plagioclase to the composition
of alkali feldspar cannot be a true tie line. The composition of the existing
feldspars, however, is comparable to that reported from other granitic rocks
(Piwinskii, 1968a) and from hydrothermal experiments on granitic melts (Piwinskii,
1968b).

If the rock analyses are recalculated and plotted in the albite-orthoclase-quartz
system with fixed anorthite content (7.5 weight percent) (Fig. 2, from James and
Hamilton, 1969), they also plot in the field of plagioclase and are far removed from
the projected plagioclase-quartz boundary curve at 1000 bars water pressure.
Unfortunately the petrographic evidence is not clear as to the time relations of
crystallisation of quartz and alkali feldspar so that a crystallisation path cannot be
suggested.

One porphyritic granophyre (Fig. 3) has been analysed and the recalculated
analysis is plotted in Figs. 1 and 2 (Analysis 9). In the quartz-saturated anorthite-
albite-orthoclase system (Fig. 1) the analysis plots very near the feldspar boundary
curve. This plot is consistent with the occurrence of phenocrysts of plagioclase and
alkali feldspar. A possible interpretation is that plagioclase and alkali feldspar
crystallised together from a granitic liquid, which later, because of a change in
physical conditions, crystallised to yield a micrographic intergrowth of alkali feldspar
and quartz.

Biotite
The composition of biotite in certain mineral assemblages is potentially useful

in the estimation of physical conditions of crystallisation (Wones and Eugster, 1965;
and Rutherford, /. Petrol., in press). In the present study ferrous and ferric iron
determinations were made on two mineral separates (Table V). Electron micro-
probe study indicates strong Fe-Mg zoning in the biotites, consequently the wet
chemical analyses represent “ average ” compositions for the biotites.

Ilmenite, magnetite, and hematite occur in the Mt Falconer pluton, but the
magnetite and hematite are associated with secondary minerals such as chlorite and
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sericite and are considered to be postmagmatic. If the ilmenite is magmatic, oxygen
fugacities less than that of the magnetite-hematite buffer are suggested (Buddington
and Lindsley, 1964). According to Wones and Eugster (1965: 1264) the ratio of
Fe"'/Fe'" -f- Fe" is about 0.25 for hematite-magnetite buffer conditions, 0.10
for nickel-nickel oxide buffer conditions, and 0.05 for fayalite-magnetite-quartz
buffer conditions. The ferric iron content of biotite from FP2-17 appears to be too
high to be in equilibrium with ilmenite and suggests the possibility of oxidation
during late-stage hydrothermal alteration (see Ghent and Henderson, 1968: 866).
The ferric iron content of biotite from FP2-6 appears compatible with the presence
of ilmenite, and presumably this biotite was more resistant to late-stage oxidation.

Estimations of water fugacity during the crystallisation of the Mt Falconer
pluton based upon biotite composition have not been attempted. Until the effects
of Ti and F on the stability of biotite have been experimentally determined,
estimates of the fugacity of water are of limited reliability.

Amphiboles

Electron microprobe analyses of amphiboles from the Mt Falconer pluton and
early mafic dykes and xenoliths were presented in an earlier paper (Ghent and
Henderson, 1968: 859, 872). In the present study, electron microprobe analyses of
brown hornblende from one camptonite dyke (FB3-2) were obtained. The analyses
and a calculated structural formula are presented in Table VI.

* Analyses by Technical Services Laboratories, Toronto.

Fig. 3.—Solidus and liquidus curves for granite, tonalite, and alkali basalt as a function of
pressure, temperature, and water content (data from Piwinskii, 1968a).

Table V. —Partial chemical analyses of biotite from the Mt Falconer pluton.

Sample No. FP2-6 FP2-17
FeOs 4.67* 7.94
FeO 23.29 20.52
Fe" 7Fe" ' + Fe" 0.16 0.26
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Water, fluorine, and ferric iron have not been determined; so the structural
formula was calculated on the basis of an anionic charge of -46 (022(0H)2).
Considering the fact that the analysis is not complete, the structural formula calcu-
lated appears reasonably good.

According to data in Deer et al. (1963) and Wilkinson (1961), the brown
hornblende is a barkevikite rather than a kaersutite as previously suggested (Ghent
and Henderson, 1968: 880). Reasons for this designation are: (1) the amphibole
has a higher iron content than most kaersutites; (2) the titanium content is too
low for kaersutite; (3) the manganese content is high, which is typical for barkevi-
kite, but not kaersutite; (4) the aluminium content is low (all Al is accommodated
in the tetrahedral position) compared to most kaersutites.

Amphiboles from the early mafic dykes (trachydiabase or trachymicrodiorite)
apparently have a complex origin (Ghent and Henderson, 1968: 856-8). The
amphiboles range in composition from tremolite (xenocrystic?) to actinolitic horn-
blende. The actinolitic hornblende replaces early-formed ferromagnesian minerals
and also occurs in coarse-grained selvages on joint surfaces and in radial growths
about cavities. On the other hand, barkevikite typically occurs as microphenocrysts,
often showing a flow fabric, and as fine-grained crystals in the groundmass.

Contrasting amphibole chemistry and mode of occurrence in the early and late
mafic dykes indicate different P-T—X conditions of crystallisation. Assimilative
reaction with xenocrystic tremolite strongly influenced amphibole crystallisation in
the early mafic dykes. Wilkinson (1961: 351) has suggested that the high degree
of replacement of Mg by Fe" in barkevikite as well as the enrichment in Mn with
respect to Fe is indicative of precipitation at a relatively advanced stage of
differentiation.

Examination of total rock analyses of two early mafic dyke and one camptonite
sample indicate very little difference in Mg/Fe ratios, but the camptonite does have
a slightly higher Mn content. Silica, however, is lower in the camptonite than in
the early mafic dykes, suggesting a less advanced stage of differentiation.

Amphibolites

Amphibolites of the Skelton Group in the Mt Falconer area are associated with
metamorphic rocks of undoubted sedimentary origin (Ghent and Henderson, 1968:
854). They occur as thin concordant layers within the metasedimentary rocks.
Marbles have not been observed in the Mt Falconer area, but are associated with
amphibolite and calc-silicate rock elsewhere in the Taylor Valley, e.g., at Bonney
Riegal. Field relationships thus strongly suggest that the amphibolites were origin-
ally sedimentary in origin, e.g., a carbonate-shale mixture, or else were thin mafic
tuffs.

It is of interest to see if the limited chemical data are compatible with a sedi-
mentary origin. Chemical distinction between a para-amphibolite tuff and a para-
amphibolite flow is not possible (see Evans and Leake, 1960: 360).

Table Vl.—-Electron microprobe analysis of amphibole from FB3-2.
SiOo 40.62 Structural formula (assuming anionic charge offormula (assuming anionic -46)charge of -46)
TiOs 4.14 Si 5.935.93TiTi0.450.45CaCa1.301.30
AI2O3 11.85 A1 2.042.04Fe"Fe"1.851.85NaNa0.640.64
FeO* 15.19 — MgMg2.402.40KK0.250.25
MnO 1.63 7.93 Mn 0.20
MgO 11.03 2.19
CaO 8.29 4.90
Na aO 2.27
ko 1.32

Total 96.36 * Total iron as FeO.
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The following chemical data are strongly suggestive of a sedimentary origin for
some of the Skelton amphibolites:

(1) Rb/Sr of Sample FS-4 is 0.46; the average for shales given by Faure and
Hurley (1963) is 0.50, whereas the average for basalt is 0.056 (Taylor and White,
1966).

(2) The Ti02 content is rather low (0.58 percent) for mafic igneous rock
(Evans and Leake, 1960: 356, table I, analysis 12).

(3) K 2O is greater than Na20, which is common in shales but rare in mafic
igneous rocks.

(4) For the SiOo content the Mg/Fe ratio is high for a mafic igneous rock.

Conclusions
On the basis of chemical and mineralogical data presented in this paper several

conclusions regarding the genesis of these rocks have been reached. In summary
these are:

(1) In major-element chemistry the Mt Falconer pluton is very similar to other
granite bodies mapped as Irizar Granite elsewhere in Victoria Land.

(2) The mafic dyes are considered to be genetically related to emplacement of
the Mt Falconer quartz monzonite pluton. Small amounts of mafic magma are
inferred to have been mobilised by hot, water-undersaturated quartz monzonite
magma.

(3) Field and chemical evidence indicate that the Skelton Group amphibolites
in the Mt Falconer area are para-amphibolites, i.e., of sedimentary origin.

(4) K/Rb ratios for total rocks fall on the “main trend” as defined by Shaw
(1968) ; however, they cannot be used to unravel the complex sequence of igneous
events.

(5) Strontium partition between alkali feldspar and plagioclase is not a reliable
geothermometer for the Mt Falconer pluton; this is likely to be due to subsolidus
redistribution of strontium.

(6) Phase relations of alkali feldspar, plagioclase, and quartz can be compared
with those in the experimental system orthoclase-albite-anorthite-quartz-water.
Chemical analyses of co-existing feldspars and total rocks, when compared with
experimental results, indicate (a) the compositions of co-existing feldspars in the
Mt Falconer pluton are comparable to those found in the experimental “ granite ”

system; (b) the petrographically determined order of crystallisation; plagioclase,
alkali feldspar (quartz) is consistent with the plots of total rock analyses in both the
quartz-saturated orthoclase-albite-anorthite—water system and the albite-orthoclase-
quartz-water system (7.5 weight percent anorthite).
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Appendix: Methods of Chemical Analysis
Wet chemical analyses of rocks and minerals reported in this paper were done at the

Department of Geology, University of Calgary, and at the Institute of Sedimentary and
Petroleum Geology, except for ferrous—ferric iron determinations on biotite, which were done
by Technical Service Laboratories, Toronto. Silica was done by the rapid spectrophotometric
method outlined by Shapiro and Brannock (1962). All other analyses were done on a Perkin
Elmer Model 303 atomic absorption spectrophotometer following the methods outlined by
Billings and Adams (1964).

As a check on the accuracy of the analyses, we have obtained analytical data on the
new U.S. Geological Survey silicate rock standards. Our results and the averages compiled by
Flanagan (1969) are listed in Table VII.
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Appendix 2: Electron Migroprobe Analysis
Electron microprobe analyses were done on carbon-coated polished thin sections and

grain mounts on an ARL EMX-SM microanalyser at the Department of Geology, the Univer-
sity of Calgary.

Operating conditions were: 15kv accelerating potential, o.lm amp beam current, and a
spot size of 10/t. Drift was corrected by the use of beam current integration. A list of
standards used can be obtained from the author.

Correction procedures used were those outlined by Bence and Albee (1968). As a
check on the accuracy of the microprobe technique and the data-correction procedure, several
analysed mineral standards were run as unknowns. An example is set out in Table VIII.
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