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Abstract
Soils which have developed on basalt in certain quite comparable environments in the
Bay of Islands, N.Z., and the New England Tableland, N.S.W., show pronounced
morphological differences—red-yellow podzolic soils on the Kerikeri Plateau and
krasnozems on the Dorrigo Plateau. Conversely, the red earths near Kawakawa, New
Zealand, and the reddish-chocolate soils near Armidale, N.S.W. which show markedly
similar macro- and micromorphological characteristics occur in quite dissimilar
environments. The anomaly results primarily from the presence or absence of clay
translocation.. This process would seem to be determined by the nature of the humus
form. Red-yellow podzolic soils, which show marked clay translocation in addition
to the formation of clay in situ by weathering, develop under a mor humus form;
whereas the red earths of the Bay of Islands and the reddish-chocolate and krasnozem
soils of New England do not show any significant clay translocation, and are associated
with a mull humus farm. This soil-forming factor, though less important in studies at
continental scale, may be a crucial explanatory variable in elucidating the pedogenesis
of smaller areas.

Introduction
This paper is based on work completed in the Bay of Islands in 1962-63 and in
New England, from a detailed examination of 150 soil profiles on the Tablelands
between Armidale and Dorrigo. Some thin-section examination was carried out to
supplement the macromorphological fieldwork. The aim of the study was to describe
some of the soil processes, especially clay translocation, in both areas, and to try to
account for the similarities and differences in soil morphology. Two methods were
used. One involved the selection of comparable environments in order to study soil
type, morphology, and process. The other required the examination of the environ-
ments of morphologically similar soil types.

It was necessary in the field research to select areas in which as many of the
soil-forming factors as possible were comparable, and although climate, and hence
vegetation patterns differ, differences in lithology and relief of soil sites were kept
to a minimum. The geology of New England is old and complex, with sedimentary
and metamorphic rocks dating back to the Silurian and Devonian; whereas in
the Bay of Islands the oldest rocks are Tertiary or possibly Permian (Kear and Hay,
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1961). However, basalt occurs in both areas. In the Bay of Islands it varies in age,
in the case of the Kerikeri basalts, from either Miocene (Bell and Clarke, 1909) or
Pliocene? (Rear and Hay, 1961), to Holocene in the case of the Takahe basalt to
the south. The New England basalts probably were all extruded in the early to
mid-Tertiary (Voisey, 1945), and those near Glen Innes have recently been dated
as Oligocene (Cooper et al., 1963). However, in many parts of both areas lithologic
similarity exists between the basalts. They are mostly dark, fine-grained olivine
basalts, although many of the younger Takahe basalts in the southern area of the
Bay of Islands are scoriaceous.

Basaltic Soils of the Bay of Islands
In general the soils of the Bay of Islands developing on basalt may be grouped

into two subdivisions. First there are the soils which are here termed red earths,
since they show remarkable similarities both in field morphology and thin section to
the tropical and subtropical red earths. These would seem to correspond, at least
in part, to the weakly leached Papakauri soils and the moderately leached Kiripaki
soils described by Gibbs (1964). They are brownish-red to red in colour, the redder
colours being associated usually with scoria and basic ash rather than with the com-
pact basalt. The A 1 horizon is shallow and granular with a silty-clay texture. The B
horizon is friable and in thin section is characterised by uniformly distributed
unorientated clay and resembles the Braunerde fabric described by Kubiena (1948,
1953). It is suggested that this horizon is formed by the chemical processes of
weathering and oxidation in situ with no significant additions by translocation or
illuviation and as such would be described in the European nomenclature as a (B)
horizon. As will be noted from Fig. 1, the depth of the horizons varies considerably
from one catenary position to another. In some areas, most notably on the

interfluves, hummocks of basaltic boulders occur and the surrounding soils are shallow
and stony. On the lower slopes the profile is deep with a well-developed (B) horizon
of fine subangular blocky structures and only a small percentage of small basaltic
“ floaters ”. At the base of the catena the water table is present at. or near the
surface for most of the year, and a gleyed red earth or ground-water gley is develop-
ing. These soils, illustrated in the generalised catenary sequence in Fig. 1, are most
commonly found in the south, developing on the younger Takahe basalts, which
are probably only 10,000 years old (Northland Region, 1964) and scoriaceous in
places.

The second broad soil group associated with basalt in the Bay of Islands
corresponds, in some respects at least, to the strongly-leached red and brown loams

Fig. 1. -Near Kawakawa, N.Z. Generalised catenary sequence of soils on basalt, showing
relationships of topography, vegetation, soil type, and climate (inset). Shallow soils with
large basalt “floaters” (black) occur on the upper slopes, well developed red earths on the
middle slopes, with ground-water gley soils and swamp vegetation in the valley bottom. The

inset shows mean monthly rainfall at Kawakawa.



No. 6 Anderson—Humus in Soil Development 91

of Gibbs (1964). However, the division used by the writer is based primarily on the
diagnostic characteristics of the B horizon. Whereas the red earths have a definite
Erde fabric in thin section and no significant textural profile differentiationresultant
upon clay illuviation, these soils are characterised by a B horizon which is heavier in
texture than the A above it. When well developed the B horizon of these soils
displays a Lehm fabric (Kubiena, 1948, 1953) in thin section, and well orientated
illuviation clay skins can be clearly seen in the larger channels. In addition to clay
translocation, the textural B (or Bt in the European nomenclature) horizon of these
soils shows some evidence of clay forming in situ (by weathering) in the micropores
—more or less along the lines described by Simonson (1949). These soils correspond
to Simonson’s description in that the A horizon is low in clay and forms only a small
part of the entire profile, whereas the underlying Bt horizon is thick and the clay
concentration there is much larger than can be attributed to eluviation from the
A. Thus in the Bay of Islands these soils have here been termed red-yellow podzolics.

Like the red earths, the red-yellow podzolic soils vary in colour and depth from
place to place, but in general they are deeper than the red earths. The Ai of the
red-yellow podzolics, although similar to that of the red earths in most respects, tends
to be deeper as well as coarser in texture. Iron nodules, or concretions, are frequently

found at the junction of the A2 and Bt horizons (see Fig. 2), and it would appear
that the older the basalt the more likely it is that ironstone concretions will be found
in the soil developing upon it. These soils occur only in the wetter areas to the north
and west, where the rainfall exceeds 55 inches, and are associated with the older
basalt flows.

Basaltic Soils of the New England Tableland
These soils developing on basalt or basaltic alluvium/colluvium on the New

England Tableland are complex and have marked catenary development. Above
4,600ft alpine humus soils are recognised (Costin et al., 1952), but as the develop-
ment of these tends to be associated with high altitude (not comparable with any
area of the Bay of Islands) they will be ignored in this study. The remainder of
the soils developing on basalt may be divided into two groups. In the west, around
Armidale, the soils in general follow the catenary pattern described by Hallsworth
and Gibbons (1951) for the Guyra district. However, in the area studied the lower
slopes are rarely characterised by greyish-chocolate soils as described by Hallsworth
and Gibbons (1951) at Guyra. Rather, this catenary position is occupied by a
normal chocolate or a slightly eluviated prairie soil with the modal prairie soil in
the deeper basaltic alluvium/colluvium on the lower slopes and in the valleys (see
Fig. 3 for generalised catenary sequence). The chocolate soils are described by
Hallsworth and Costin (1950) as “ soils in which the profile shows no eluviation of
sesquioxides . . . slightly acid to neutral in the surface”. Hallsworth et al. (1952)

Fig. 2.—Kerikeri Plateau, N.Z. Generalised catenary sequence of soils on basalt. In a similar
climatic setting to Fig. 1, but with different vegetation, red-yellow podzolic soils occur on the

upper and middle slopes. (Inset: climate.)
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later indicate that their diagnostic features include a chocolate friable clay loam Ai,
a relative abundance of montmorillonite clay, a resultant high cation exchange
capacity, and a characteristic subsoil with no horizon of GaGOs accumulation.
Environmentally they occur between the chernozem and the krasnozem, but are not
included in Stephens’s (1962) classification. In this area the soils are frequently
complicated by the inclusion of ironstone concretions, which at times accumulate on
the lower slopes by colluviation. Eastwards, near Ebor, as Fig. 4 illustrates, greyish-

chocolate soils appear and become more widespread on the middle slopes, while
the reddish-chocolate soils on the interfluves become more widespread and morpho-
logically more krasnozem-like.

Toward Dorrigo, krasnozems occupy an increasing percentage of the catena, as
illustrated in the generalised cross-section in Fig. 5. These soils are characterised
by a deep, homogeneous profile with only a shallow Ai horizon. There is no
significant clay translocation, and in thin section the (B) horizon has an Erde fabric.
Stephens (1962) indicates that the absence of profile differentiation is “because of
the flocculating effect of the high content of hydrated ferric oxide, which minimises
the movement of their generally kaolinitic clay by normal eluvial processes”. In

Fig. 3.—Near Armidale, N.S.W. Generalised catenary sequence of soils on basalt. As in Fig. 1,
the shallow soils have numerous basalt “ floaters ” in the higher positions, while there are
reddish-chocolate soils on the slopes. In contrast with the two New Zealand examples (Figs. 1
and 2) the rainfall at Armidale (inset) differs in seasonality and amount, and temperatures

are less equable.

Fig. 4.—Near Ebor, N.S.W. Generalised catenary sequence of soils on basalt. Under higher
rainfall conditions (inset), the reddish-chocolate soils on the interfluves begin to resemble

krasnozems, and greyish-chocolate soils appear in mid-catena.
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terms of international usage these soils would seem to correspond with latosols (as
noted by Stephens, 1962) or with tropical red earths, since the fabric of the (B)
horizon in thin section is more of an Erde than a Lehm.

Different Soil Types in Similar Environments
The most comparable environments between the two areas are the Dorrigo

Plateau and the Kerikeri basaltic plateau. The basalt in both is fine-grained,
compact, and dark, with olivine crystals. Although the Dorrigo basalt is older than
that of Northland, it may be suggested that this is unimportant as in both areas
there has been ample time for soil formation. Climatically the areas are similar—-
—the higher altitude of Dorrigo compensating for its lower latitude. Using Kerikeri
and Dorrigo as examples, the insets in Figs. 2 and 5 indicate that the monthly
temperature averages of the two areas are almost identical, and an examination of
the diurnal ranges, so far as these are available, indicates that these do not differ
significantly. Although the seasonal rhythm of monthly rainfall totals is different
(see Figs. 2 and 5) the yearly totals of 64 in. at Kerikeri and 74 in. at Dorrigo are
reasonably comparable.

Yet on identical degrees of slope there are red-yellow podzolic soils on the Keri-
keri Plateau and krasnozems at Dorrigo. The former show evidence of clay move-
ment and the latter are stable homogeneous soils. It may be suggested that something
in addition to the flocculating effect of the clay minerals is responsible for the
differences, as this to some extent characterises the soils in both areas. It could be
argued that the rainfall in the Bay of Islands is more effective than that at Dorrigo,
since the maximum falls are in the winter, when the effect of evaporation is at a
minimum. However, this is amply compensated for by the larger falls and greater
yearly total at Dorrigo. Thus it appears that lithologic, climatic, topographic, and
time differences are insufficiently divergent for clay translocation to occur in one
area and not in the other, even given the importance of clay-mineral flocculation.
In any explanation of this the different vegetation patterns and humus forms must
therefore merit serious consideration, even though Muir (1961) indicates that there
is no clear connection, on a world scale at least, between a clay-depleted A2 and the
presence or absence of raw humus.

In the Bay of Islands red-yellow podzolic soils developed under a primitive vege-
tation1 of either kauri forest or a kauri-podocarp forest with a narrow fringe of

1 From unpublished “ Primitive Vegetation ” map compiled by the Department of Forestry,
Kaikohe, and reproduced with permission in Woods (1963). It represents the distribution
of the vegetation of the area before cultural intervention, but in a climatic environment
similar to that of the present.

Fig. s.—Dorrigo Plateau, N.S.W. Generalised catenary sequence of soils on basalt. Even
higher rainfall at Dorrigo (inset) produces some gleying where there is interference from the

ground-water table, but these soils otherwise have very little catenary differentiation.
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broadleaved species and podocarps along the streams. Investigations in the field
in Northland have shown that these forest types (particularly kauri) are mor-
forming. Laboratory work by Bloomfield (1953) on kauri litter shows that this
is extremely acid and, acting in the same manner as the litter of Scots Pine, is
conducive to podzolisation. The National Resources Survey (Northland Region,
1964) specifically lists kauri as a mor-forming species and indicates that “ with a
similar rainfall, there is an intensification of strong leaching under mor-forming
species and a retardation of this tendency under the mull-forming trees On the
other hand, the red earths, which display no evidence of clay translocation, were
developed under a “ primitive vegetation ” of broadleaf-dominant forest or a mixed
broadleaf-podcarp forest where broadleaved trees were dominant. These species are
mull-forming (Northland Region, 1964).

The natural or indigenous vegetation of the krasnozems of the Dorrigo area is
thought to have been broadleaved tropical rain forest with Argyodendron as the
dominant tree (Baur, 1957). As in the Bay of Islands the vegetation was not similar
over the entire krasnozemic area, and small areas of natural grassland occurred, but
it seems that the dominant species were everywhere broadleaved trees or grassland.
The humus form developing under such a vegetation would be a mull. As the red-
yellow podzolic soils of the Bay of Islands, which have marked textural differentiation
in the profile and a Lehm fabric in the B horizon, developed under a mor humus
form, and in a similar climatic and lithologic environment on the Dorrigo Plateau,
krasnozems with no textural differentiation in the profile and an Erde fabric
developed under a mull humus form, the writer favours the hypothesis that it is the
nature of the humus form that it is mainly responsible for the development of
differing soil types in these similar environments.

In the Dorrigo area the humus form of the present disclimax vegetation, pas-
palum and white-clover dominant pasture, is a mull. It therefore perpetuates the
influence of the mull humus form of the original vegetation. In the Bay of Islands
the present vegetation pattern on both the red-yellow podzolics and red earths is
complex, but it is predominantly white clover, paspalum, cocksfoot, and/or rats-
tail pasture, which is mull-forming, and in the case of red-yellow podzolics must
to some extent ameliorate the effect of the mor humus form produced under
the natural vegetation. This raises the problem of whether a mor humus form
is necessary only to initiate clay tranlocation, which once begun continues, or
alternatively whether clay movement occurs in the Bay of Islands only under a
mor humus form and whether in many of the red-yellow podzolic soils now
under a pasture-grass disclimax vegetation and a mull humus form translocation
is no longer operative, and in fact these are to this extent fossil soils related to the
natural vegetation cover.

Similar Soil Types in Dissimilar Environments
A marked morphological similarity exists between the red earths of the Bay of

Islands and the chocolate, especially the reddish-chocolate, soils of the Northern
Tablelands. Both soil types have a shallow, yellow-brown to dark-brown, silty clay
loam Ai horizon with well-developed crumb structures. These are finely porous when
dry. With the exception of one red-earth profile, the pH of the A horizon at all
sites varied only from 5.8 to 6.0. The (B) horizon varies in colour in both but it is
usually a clay-loam with small to medium subangular blocky structures and a pH
varying from 5.9 to 6.6 in the red earths and from 5.7 to 6.2 in the reddish-chocolate
soils. Both soil types often contain numerous basaltic “ floaters ”. In order to
substantiate this apparent similarity, the red earths were studied in relation to the
comparative table of diagnostic properties of the euchrozem, chernozem, reddish-
chocolate, and krasnozem soil types in Hallsworth et al. (1953, p. ,324). This
demonstrated that in every detail except handling consistency the red earths closely



corresponded to the reddish-chocolate soils. Handling consistency varies from friable
in the red earths to “ compact and tenacious ” in the reddish-chocolate soils. The
(B) horizon of the red earths is frequently much shallower, and it is only with the
assistance of colluviation that it assumes any great depth. This difference in depth
appears to be related to differing ages and to the duration of weathering of the
parent material. The red earths are generally associated with the younger Takahe
basalt flows, which “ are of uppermost Pleistocene to Holocene in age ” (Kear and
Hay, 1961). Despite the morphological similarity of these soils, the environmental
conditions under which they are developing differ. In Northland the red earths
occur in an area which receives about 55 in. of rainfall, whereas in the area of New
England under study the reddish-chocolate soils are most commonly found in an area
of about 31 in. The red earths occur on a great variety of basaltic parent material,
from young, highly vesicular scoria to compact, fine-grained massive basalt. Indeed,
there is greater variety of parent material within the Bay of Islands environment
than in the areas with reddish-chocolate soils in New England.

As noted previously, the red earths developed under a natural vegetation of
broadleaved or broadleaf-podocarp forest in both of which taraire was the dominant
species. The chocolate soils of New England are said (Hallsworth et at., 1952) to
be associated with a natural vegetation of tall woodland dominated by Eucalyptus
blakelyi and E. albens. All these communities, as well as the present disclimax
pastures of both areas, are mull-forming.

In terms of the development of these soils in such different environments, there
is a problem associated with the duration of weathering. Most frequently the red
earths are associated with the younger basalt flows and scoria cones, and in
consequence they may be immature soils, as suggested by the N.Z. Soil Survey
(Gibbs, 1964). That survey describes all the soils developing on basalt in this area
as red and brown loams and subdivides them on the basis of maturity, that is, on
the amount of leaching"that has occurred: “ the most leached (and the most mature)
of the brown loams occur on the gently undulating surface of the older basalt sheets ”
(Northland Region, 1964). This would imply that at least some of the red earths
are merely immature red-yellow podzolic soils and that, given a longer time, they
could become greatly leached and develop the Bt horizon characteristic of the red-
yellow podzolic rather than merely increase the depth of the (B) horizon so charac-
teristic of the red earths and reddish-chocolate soils. However, in other areas of the
Bay of Islands red earths do occur on the older basalt flows, associated with a
“primitive vegetation” of mull-forming broadleaf-podocarp (taraire dominant)
forest, thus emphasising the importance of the humus form in soil process and
development.

In Australasia much emphasis has been given to the study of climate, parent
material, relief, and time as soil-forming factors, but scant attention has been devoted
to the vegetation cover and the nature of the humus form. For example, McGarity
(1963), although indicating that all five of the soil-forming factors (Jenny, 1941)
are essential for the development of any soil, states that “ the complicated pattern of
distribution of great soil groups (in northern New South Wales) ... is largely a
consequence of differences in climate, relief, parent material, and the time factor ”

and that “ it appears that climate on a continental basis, geology on a regional basis,
and topography on a local basis can satisfactorily account for the present general
distribution of soils in northern New South Wales ”. While not questioning the
accuracy of these views in a general sense, the conclusions of the present enquiry
suggest that in any attempt to provide a reasonably detailed explanation of soil-type
distribution based on morphology and genesis, the vegetation-—more specifically the
nature of the humus form—should not be ignored.

95Anderson—Humus in Soil DevelopmentNo. 6
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