and the manoeurring of the machme in the oft times close quarters of a farmyard 15 made perfectly easy. To the ind of the diferential case is fitted an arm: th is is onted to a support in the middle of which is a shding plunger. When the arm is depressed, the plunger passes through a hole in the hd of the casing, and apphes a band brake which is noounted on the differentich gear.
In order to transmit power to the cutter-blate an eccentric sleeve and connecting rod are provided these are brought into operation by means of a hand lever (A), shown in the plan we of the tracto: The hand lever is fixed to a short longitudmal shaft (B), mounted on two hearings which are fixe to the frame, the forward end of the shaft is bent as shown, and it engages with the forked end of a bent cross-shaft (C). Two hanging levers are fixed to the latter shaft, and their ends corry a clutch bride, for the purpose of engaging or cisengaging the posituve clutch (D). That portion of the clutch which is marked (E) is free on the chaft and it has an eccentric turned on 1t. When the positive clutch 13 in mesh, the eccentric imparts moverient to a reciprocating or rocking arm, to which the cutter blade is attached by means of a toggle jointed link; it is thereby reciprocated by the throw of the eccen tric. To tilt the points of the cutter, so as to bring them down to therr work from tume to time as required, a hand leyer is employed. The lower arm of this lever has, in engagement with it, a hook or catch connected to a chain link attached to the finger-bar of the cutter. When the hand lever is pulled back, it rases the cutter ont of action, and the lever then enters a notch in a crose - pipce fixed to the support tor the stecring rod, as shown in the side elevation of these parts. The length of the cutter-blade is five feet; this is considerably longer than the blades of an ordmary horse drawn reaper and a muck wider strip of grass can therefore, be mown at one cut

reversing gear (mounted on the countershaft!.

The steermg gear of this machune is somewhat acvel; the support for the steerning rod consists of an upright bracket, which carries an internallvthreaded socket or learms, The steerng is effected by means of a long shaft or rod, screwed to sut the threaded socket this ro inclimes downwarts to the leadmg axle, and 1 ts tower end termisates in a ball This ball is fitted mito a cup-chaped socket screwed moto the near sude axle-arm the two axle-arms are connected together by means of a front connecting rod in the usual manner. We can understand that this arrangenient may be proauced at a low cost, and if the machme is used as a reaper only, there is no reason why it should not prove itself stiff enough for the purpose, but if the machme is to be used on hard lumpy roads, such a method of steerning might not last long.

The forward end of the mam frame is supported on semr-elliptical springs and the road wheels are of the type usually to be found on all agricultural motors.
The general arrangement of the complete machme is such that its operation is controlled with perfect ease by the driver. The motor and reaper, being combined in the one constraction remier tranler-

plan, showing generai arrangement or sharp's motor reaper.
couplinos and ther atten ant evil, unnecessary The drawings show that the addition of a pulley for belt transmussion of power to fived or pertable machines bas been constidered, but such an arrangement has not been incorporated in the machine which is illustrated on this page.

Effect of Wind Resistance.

AN INTERESTING EXPERIMENT FOR THE BENFFIT OF MOTORISTS.

[To the fnitor]

$S_{1 r}$ - Durng the past motorng season I have watched with considerable interest a large number of events take place handicapped under formula which take into consideration wind resistance.
I was wonderng whether anyone had any reliable data 1 l regard to the wind resistance of rapidly moving motor cars, and as there did not seem to be much available I thought some test at Brooklards Track would be useful to motorists, and therefore on Friday last, thanks to the courtesy of Mr. Rodakowski and the Brooklands authorities 1 was allowed the use of their finishing straght, for timmg trats on a 38.4 hp . (R.A.C. Rating) Napier I had the advantage of the assistance of two R.AC. Official timekeepers, Messrs. F. I. Bidlake and A G. Reviolds, who timed the car over each teat.

The six-cylinder Napier drwen by Mr. Trion as shown in picture No I had a wind screen erected on it of 30 sq . feet, the dimenstons being 6ft. wide bv j ft high and being burlt up of laths 6 ft . long and 2 m wade, so that each lath represented one sciuare foot. Snteen runs were made commencurg with the total area exposed to the wind, and after each run 2 sq feet, $i e$ two laths were removed, and the result of these runs came ont as follows.-
Wind-resistance tests carred out Ausust 16th 1907 on a 38.4 (R.A.C. Rating) six-cyhnder Napler car Timed by F. T. Bidlake Esq., and A J Reynolds Esq., official timekeepers Royal Automobyle Club. Total area of wind screen 30 square feet

Area of wind 1 e sisting screen.				Time aver flyung $\frac{1}{4}$ mile.		Speedin mules per hour.	
1st run	30	squ	feet	184 -5		47.85	mp
2nd	28	,		18	,	50.0	
3d	26		',	17	"	529	
4th .,	24		,	16		5615	
5th.	22	'		$163-5$		540	
th	20			$16 \mathrm{l}-5$		555	
th	18	"		$154-5$		570	
th	16			$153-5$		576	,

Area of wind 2
sisting screen wo orerfi- Speed in mile 9 9th run 10th 11 th loth leth 13 , 14 th 1 bth $16 t_{h}$
17 th 18th 18th

14 square feet	15	secs.	60	mph
12 ,, ",	1425	"	635	
10 ,	14	,	642	
8	133-5	',	(6) 1.5	,"
6 ,	$1 \cdot 3+5$	''	70.25	,
1	12	,	50	,
\because, ,	$121-5$,	738	,
Normal	1) 2 a	"	790	,
$1547 \mathrm{ft} \mathrm{r}^{2} \mathrm{rras}-$	15.45	'	57	
ged as gradtron				
$\underline{24} \mathrm{sq}$ ft intwo	$173-3$	',	311	"
blocks with 6 sqg ft				
interval hetween				
them.				

Bessdes these 10 runs there were two otheis, the results of which were very interesting
First, a run with each alternate lath removed leaving a total wind-resisting area of the screen of $15 \mathrm{sq} . \mathrm{ft}$. The tme however for this run was 15 $4-\tilde{j}$ secs. giving a speed of 57 m p.h. showing very clearly that although there was actually only 15 sq. ft . of resistance on the screen, owing to the arrange ment and apparent extra skin and corner friction, etc., the ressctance was the same as if if had 18 sq. ft. of continnous surface. Motcirsts shonld take special note of this, as it is pretty good proof that a large number of small protuberances on a motor car are detrimental to its free rumning.

The nevt test was to have the total arer exposed of 24 ft ., but arranged in tiso portions, the top one consisting of 13 sn ft solid then a gap of $6 \mathrm{sq} . \mathrm{ft}$ and then the remanning 11 sq . it, solud, the total solnd area exposer? thus bemg 2.1 sol. ft. but the actuzl effect on the car was as if about 27 se ft. were espased. It wrll be noted in gomg through the accompanyung table that the slowest speed recorded with masimum wind reastance was 4785 miles per hour, whereas the highest was 79 , a variation of over 3I miles per hour mercly by the addition of wind reastance and practically no additional weight; so all owners of large touring cars with wind shields, monsines, etc., must reanse the enormons extra work they are giving their engines to do, and uncrdentally their driving tyres, when they travel fast against a strong hear k ind. Thas extra work is of course only obtained by the consumption of con siderably more petrol, and so the varying petrol results that motor-car users sometimes get must be very carefully considered, and the direction of the wind when petrol consumption tests are feing made; in fact, the only usetul ones are when an "out and home coutse ju chuser
The accompanying pictures show, No. It the ancyhnder Napter car end on showng the full capacity of the wrod screen. No :- some of the Brooklands men showng how the laths were removed No. 3 the grudiron type of wind arreen referred to m test No 17
No 4. is a gromp of gentlemen round the car who assis ${ }^{t}$ d me to make the expermments a success, and readno from the left th molit they are as follows Messra. Reynolds Ridlake, tyo of the Brooklands' mecharics, Staner, Edge, Smith New and Tiyon
I can only oonclude by thanking those who assisted, and particularly the Brooklands track people for allowng the unnterrupted use of then finishing straght It is merely another example of the extraorlmary value that the Brooklands trach can be to British Automobilists and I hope at ant early date to carry out very mach more exliaustive evperiments in many other directions, including the effect of weight on speed and petrol consumption whthnit increasing wind arpa.

If there are any details not mentioned here (which of course I have ma very elaborate degree) that would be useful to other British manafacturers who have not had the opportunity of attendung at Brook-

