Let k be the group (expenditure) weight for the seasonal group—e.g., the annual total consumer expenditure on items in this group per £1,000,000 of all consumer expenditure represented in the

Let f(m) be some function (to be defined) of m, subject to the condition that $f(1) = \mathcal{Z}_{q_1} p_1$. It is further assumed that—

(i)
$$\frac{f(m)}{f(1)} = 1 + (m-1)T, \text{ where}$$

$$T - (\text{say})_{\frac{1}{30}} \left[\frac{\Sigma q_{12}p_{12}}{\Sigma q_{12}p_0} + \frac{\Sigma q_1p_{13}}{\Sigma q_1p_1} + \frac{\Sigma q_2p_{14}}{\Sigma q_2p_2} - 3 \right]^*$$
(ii)
$$i_{\text{m}} = \frac{f(m)}{f(1)} \times 1000$$

(iii)
$${}_{\rm m}i_{12y} + {}_{\rm m} = \frac{ {\cal E}q_{\rm m}p_{12y+m}}{{\cal E}q_{\rm m}p_{\rm m}} \times 1000$$

(iv)
$$\frac{i i_{123} + m - \frac{m i_{123} + m \times i_m}{1000}}{1000}$$

(v)
$${}_{1\,2r\,+a\dot{l}_{\,1\,2y}\,+\,m} = \frac{{}_{1\dot{l}_{\,1\,2y}\,+\,m}}{{}_{1\dot{l}_{\,1\,2r}\,+\,a}} \times 1000$$

It then follows that

$$\begin{split} & \frac{\text{12r} + \text{a}i_{12y} + \text{m}}{\text{a}i_{12r} + \text{a} \times \frac{1}{1}i_{\text{m}}} \times 1000 \\ & = \frac{\Sigma q_{\text{m}}p_{12y} + \text{m}}{\Sigma q_{\text{m}}p_{\text{m}}} \times \frac{\Sigma q_{\text{a}}p_{\text{a}}}{\Sigma q_{\text{a}}p_{12r} + \text{a}} \times \frac{1 + (m-1)T}{1 + (a-1)T} \times 1000. \end{split}$$

Let the expression

$$rac{\mathcal{E}q_{\mathrm{a}}p_{\mathrm{a}}}{\mathcal{E}q_{\mathrm{a}}p_{\mathrm{1},2\Gamma+\mathrm{a}}} imesrac{\mathcal{E}q_{\mathrm{a}}p_{\mathrm{a}}}{1+(a-1)T} \ rac{\mathcal{E}q_{\mathrm{m}}p_{\mathrm{m}}}{1+(m-1)T}$$

be written as $\phi(m)$; this is independent of y, also k, r, a, and T are constant for all values of m. Further, let Q_n , Q'_n , Q''_n , &c., be written for $\phi(n)q_n$, $\phi(n)q'_n$, $\phi(n)q''_n$, &c., respectively. It follows that

$$\frac{1 \text{ 2r} + \text{a}^{i}_{12} \text{y} + \text{m}}{k} = \frac{\phi(m) \, \Sigma q_{\text{m}} p_{12} \text{y} + \text{m}}{k} \times 1000$$

$$= \frac{\Sigma Q_{\text{m}} p_{12} \text{y} + \text{m}}{k} \times 1000.$$

In either of these last two forms the formula is well adapted to numerical evaluation for any month by using the set of weights (qm, &c., or Qm, &c.) appropriate to that month (there are only twelve sets of weights, corresponding to the twelve possible values of m, of which a is one) and the current monthly prices (p_{12y} + m, &c.).

More logically, however, it may be written

$$egin{align*} {}_{1\,2\mathrm{r}\,+\,\mathrm{a}^{\dot{i}}\,_{1\,2\mathrm{y}\,+\,\mathrm{m}}} &= rac{\phi(m)\,\, arSigma_{\,1\,2\mathrm{y}\,+\,\mathrm{m}}}{\phi(a)\,\, arSigma_{\,1\,2\mathrm{y}\,+\,\mathrm{m}}} imes 1000 \ &= rac{arSigma_{\,1\,2\mathrm{y}\,+\,\mathrm{m}}}{arSigma_{\,2\,2\mathrm{y}\,+\,2\mathrm{m}}} imes 1000. \end{gathered}$$