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Let & be the group (expenditure) weight for the seasonal group—e.g., the annual total consumer
expenditure on items in this group per £1,000,000 of all consumer expenditure represented in the
index.

Let f(m) be some function (to be defined) of m,
It is further assumed that—
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be written as ¢(m); this is independent of ¥, also k, 7, a, and T are constant for all values of .
Farther, let Qu, Q@n, @"n, &c., be written for

B()¢n, H(n)g'n, $(n)q"n, &e., respectively.
It follows that
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In either of these last two forms the formula is well aslapted to numerical evaluation for any
month by using the set of weights (qm, &e., or Qm, &e.) a
v

ppropriate to that month (there are only
welve sets of weights, corresponding to the twelve possible values of 7. of which « is one) and the
enrrent monthly prices (p, oy 4 m, &e.).
More logically, however, it may he written
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